The Effect of Exercise and Heart Rate Variability on the Antibody Response to Influenza Vaccination: A Pilot Randomized Controlled Trial

Master thesis in Medicine

Martin Eriksson

Supervisor
Professor Richard P. Sloan
Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, Columbia University, New York, USA

Preceptor
Associated Professor Lennart Dimberg
Department of Public Health and Community Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

UNIVERSITY OF GOTHENBURG

Programme in Medicine

Gothenburg, Sweden 2015
Abstract/Summary

Objective: Evidence suggests that chronic aerobic exercise acts as a behavioral adjuvant to vaccination mainly in the elderly although the mechanisms are uncertain. Aging is associated with immunosenescence largely attributed to low-grade chronic inflammation. Efferent vagal signaling has anti-inflammatory effects. High frequency heart rate variability (HF-HRV) is a noninvasive measure of vagal activity. In this pilot randomized control trial (RCT), we examine whether exercise training, cardiorespiratory fitness, measured as maximal oxygen uptake (VO2max) from exercise test, and HF-HRV relate to the antibody response to influenza vaccination.

Method: Twenty-six healthy, sedentary adults (23-56 years, mean age 36.8 SD=9.9) were randomly assigned to an exercise group (n=13) or waitlist control group (n=13). Subjects assigned to exercise group exercised at 65-80% of their maximum heart rate for 30 minutes, 4 days/week for 12 weeks prior to trivalent influenza vaccination and for 4 weeks after vaccination. Controls did not change activity and were also immunized at 12 weeks. HF-HRV, VO2max, and antibody titers were measured before intervention, at the time of vaccination, and 4 weeks later.

Results: Antibody titer values were log transformed and antibody-response was calculated as increase relative to pre-vaccination titers. Exercisers significantly increased their mean VO2max values compared to controls (6.24 to 1.13 ml/kg/min, p=0.0274) after 16 weeks, but there was no group effect on HF-HRV. Titers increased significantly (all 3 strains) post-vaccination, but no group difference was observed in antibody response or seroprotection (hemagglutination inhibition titer, HAI, ≥40). Regression analysis showed neither higher levels of VO2max nor HF-HRV at time of immunization predicted a greater antibody response. Similarly, greater increases of
VO2max and HF-HRV, measured at both 12-week pre-vaccination period and 4-week post-vaccination period, did not predict a greater antibody response.

Conclusion: A 16-week exercise intervention did not enhance the antibody response to the flu vaccine in healthy sedentary young adults. Higher levels and greater increases of VO2max and HF-HRV were not predictive of a greater antibody response. In addition to small sample size, this trial is limited by studying mainly younger participants, in whom exercise may not further enhance antibody responses due to a possible ceiling effect. Future studies, preferably in older individuals, are needed to assess if greater exercise-induced HF-HRV as an index of vagal regulation is associated with the antibody response to immunization.

Keywords: Exercise; Influenza; Vaccination; Heart rate variability; Immunity